Kupffer Cells, Hepatic Stellate Cells, And Liver Fibrosis

David A. Brenner, MD
Hepatitis C Virus

Mild inflammation

Inflammation

Fibrosis

Cirrhosis
Non-alcoholic Fatty Liver Disease

Steatosis

Steatohepatitis

Fibrosis

Cirrhosis
Chronic Inflammation leads to Fibrosis

WBC recruitment

Kupffer cell activation

HSC activation

Activated Myofibroblast

INJURY
LPS
TLR4
TNF-α
IL-1
MIP-1

TGF-β
Ang II
Leptin
ROS

KO mice – TLR4, TNF-α
TLR4 induces proinflammatory responses, but not profibrogenic pathways

- **LPS** (HMGB1, Hyaluronan)
 - TLR4
 - MD2
 - CD14

MyD88-independent pathway:
- TRIF
- TRAM
- MyD88

MyD88-dependent pathway:
- IRAK1
- IRAK4
- TRAF6
- TAK1
- IKKα
- IKKβ
- JNK
- IκBα
- p50
- p65

Nucleus
- IRF3
- IFN-β transcription
 - RANTES, CXCL10
- NFκB
- AP-1

Proinflammatory cytokines
- TNF-α, IL-6, IL-12, CXCL1
Activation of Hepatic Stellate Cells

Quiescent HSC
- TLR4
- Proinflammatory cytokines

Activated HSC
- TLR4
- Proliferative cytokines (PDGF)
- Fibrogenic cytokines (TGFβ)
- Proinflammatory cytokines
- Collagen production
- α-SMA expression
- Fibrogenesis
- Proliferation

Kupffer cell
- Retinoid droplets
The role of TLR4 in hepatic fibrogenesis

TLR4
C3H/HeOuJ

TLR4-mutant
C3H/HeJ

Bile duct ligation
Intragastric CCl₄ administration
Thioacetamide in drinking water

Hepatic fibrosis

Analysis: Sirius red staining, IHC for αSMA, Hydroxyproline mRNA levels of profibrogenic genes by qPCR
TLR4-mutant mice display strongly reduced fibrosis after BDL

Sirius red staining
- TLR4^{WT} Sham: Sirius red staining is faint.
- TLR4^{WT} BDL: Sirius red staining is more intense.
- TLR4^{mutant} Sham: Sirius red staining is faint.
- TLR4^{mutant} BDL: Sirius red staining is significantly reduced.

Hydroxyproline
- TLR4^{WT} Sham: Hydroxyproline levels are low.
- TLR4^{WT} BDL: Hydroxyproline levels are high.
- TLR4^{mutant} Sham: Hydroxyproline levels are low.
- TLR4^{mutant} BDL: Hydroxyproline levels are significantly lower.
TLR4-mutant mice showed less fibrogenic responses 5 days after BDL

* P<0.05

TLR4 signaling is required for hepatic fibrosis after BDL
TLR4 is essential for all models of hepatic fibrosis
TLR2 is not important for hepatic fibrosis after BDL
Gut-sterilization by antibiotics cocktail suppresses plasma endotoxin level after BDL

Antibiotics cocktail (Ampicillin, Neomycin, Metronidazole, Vancomycin) for 4 wks.
Gut microflora contributes to liver fibrosis

Antibiotics cocktail (Ampicillin, Neomycin, Metronidazole, Vancomycin) for 4 wks
Kupffer cells and HSCs are the direct targets of TLR4 ligand in the liver.

![Image of microscopic images showing the effects of LPS treatment on liver cells.](image)

- **Non-treated**
 - LPS-: No significant changes.
 - LPS+: Some cells show increased NF-κBp65 and Desmin expression.

- **Clodronate**
 - LPS-: Minimal effects.
 - LPS+: Marked increase in NF-κBp65 and Desmin expression in a subset of cells.

Legend
- **Green:** NF-κBp65
- **Red:** Desmin

Diagram
- LPS → Kupffer cell → TNF-α → HSC
- LPS directly affects Kupffer cells and HSCs.
Combination of Clodronate, irradiation, and BMT replaces Kupffer cells, but not HSCs

HSCs are not derived from BM 2 weeks after BDL. (Kisseleva et al 2006, J Hepatol)
HSCs, but not Kupffer cells, are the target of TLR4 ligands in hepatic fibrosis

TLR4^{WT}BMI→TLR4^{WT}
TLR4^{mutant}BMI→TLR4^{mut}

Sirius red

<table>
<thead>
<tr>
<th></th>
<th>sham</th>
<th>BDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTBM→WT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLR4<sup>mutant</sup>BM→WT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hydroxyproline

<table>
<thead>
<tr>
<th></th>
<th>sham</th>
<th>BDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTBM→WT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLR4<sup>mutant</sup>BM→WT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TLR4 signaling enhances TGF-β induced HSC activation

Collagen promoter-driven GFP Tg HSCs

Quiescent mouse HSCs

TGF-β reporter
Collagenα1(I) reporter
LPS primes quiescent HSCs for activation by Kupffer cell-derived TGFβ
Kupffer cells are required for hepatic fibrosis after BDL

Green: αF4/80/Red: αDesmin

TGFβ1

Hydroxyproline

Sirius red
Microarrays identify 121 LPS-regulated genes in quiescent HSCs

Expression levels of other TGFβ signaling regulated molecules (TGFβ receptors, Smad molecules, SnoN, Ski and Sara1) were unchanged.
TLR4 signaling regulates Bambi expression in HSCs

Quiescent HSCs

- LPS
 - -
 - +

- BDL
 - -
 - +

In vivo activated HSCs

- TLR4^{WT}
 - -
 - +

- TLR4^{mut}
 - -
 - +

Type I receptor homodimer

- Signal transduction

Type II receptor

- TGFβ

Bambi

- Bambi heterodimer

- No Signal

TLR4

- TGFβ

- TGFβR

- Bambi
Bambi regulates LPS-mediated TGF-β induced HSC activation

- TGFβ + TGFβ
- LPS - LPS
- LPS - LPS
- LPS - LPS

AdLacZ

+ LPS + LPS
+ LPS + LPS
+ LPS + LPS
+ LPS + LPS

AddnBAMBI

- LPS - LPS
- LPS - LPS
- LPS - LPS
- LPS - LPS

AdBAMBI

+ LPS + LPS
+ LPS + LPS
+ LPS + LPS
+ LPS + LPS

Collagen-GFP+ cells (%)
control dn-BAMBI BAMBI
- + - +
- + - +
- + - +
- + - +

CAGA-luciferase (fold induction)
control dn-BAMBI BAMBI
- + - +
- + - +
- + - +
- + - +

*, p<0.05
n.s.
Bambi expression and HSC activation are regulated in a TLR4-dependent-NF-κB-dependent manner.
Bambi expression and hepatic fibrogenesis are regulated in a TLR4-dependent-MyD88-dependent manner.
Summary

LPS

TLR4

Chemokines

Bambi

TGFb-RI

HSC activation

Collagen deposition

Liver fibrosis

Kupffer cell

quiescent HSC

Adhesion molecules

TGFβ

Collagen deposition

Liver fibrosis
TLR4-mutant mice treated with CDAA diet have a reduction of steatosis and fibrosis.
TLR2-deficient mice treated with CDAA diet have a reduction of fibrosis, but not of steatosis

H-E staining

WT: [Image of H-E staining for WT mice]

TLR2-/-: [Image of H-E staining for TLR2-/- mice]

Sirius red staining

WT: [Image of Sirius red staining for WT mice]

TLR2-/-: [Image of Sirius red staining for TLR2-/- mice]

Graph

Sirius red pos-area (%)

- **WT**
 - CSAA: [Value]
 - CDAA: [Value]

- **TLR2-/-**
 - CSAA: [Value]
 - CDAA: [Value]
Acknowledgements

University of California, San Diego
 Ekihiro Seki, M.D.Ph.D.
 Samuele De Minicis M.D.
 Christoph Oesterreicher M.D.
 Kojiro Taura M.D.PhD.
 Masayuki Adachi M.D.Ph.D.
 Tatiana Kisseleva M.D.Ph.D.

Gifu University, School of Medicine
 Yosuke Osawa M.D.Ph.D.

Columbia University, College of Physicians and Surgeons
 Robert F. Schwabe M.D.