Lipoprotein Formation, Structure and Metabolism:

Cholesterol Balance and the Regulation of Plasma Lipid Levels

David E. Cohen, MD, PhD

Director of Hepatology, Gastroenterology Division, Brigham and Women’s Hospital

Director, Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology

Associate Professor of Medicine and Health Sciences and Technology, Harvard Medical School
Multiple Studies Showed a Relationship Between LDL-C Reduction and CHD Relative Risk

![Graph showing the relationship between LDL-C reduction and nonfatal MI and CHD death relative risk reduction. The graph includes data from various studies such as CARDS, POSCH, ASCOT-LLA, and others.](image-url)
ATP 2004 Update: LDL-C Therapy by Risk Categories Based on Recent Clinical Trial Evidence

<table>
<thead>
<tr>
<th>Risk Category</th>
<th>LDL-C Goal</th>
<th>Initiate Therapeutic Lifestyle Changes (TLC)</th>
<th>Consider Drug Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk: CHD or CHD risk equivalents (10-year risk >20%)</td>
<td>≥190 mg/dL (consider drug options if LDL-C 160–189 mg/dL)</td>
<td>≥160 mg/dL</td>
<td>≥100 mg/dL</td>
</tr>
<tr>
<td>Very high risk</td>
<td>≥160 mg/dL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderately high risk: ≥2 risk factors (10-year risk 10%–20%)</td>
<td>≥130 mg/dL (optional goal <100 mg/dL)</td>
<td>≥130 mg/dL</td>
<td>≥130 mg/dL (consider drug options if LDL-C 100–129 mg/dL)</td>
</tr>
<tr>
<td>Moderate risk: ≥2 risk factors (10-year risk <10%)</td>
<td>≥130 mg/dL</td>
<td></td>
<td>≥130 mg/dL</td>
</tr>
<tr>
<td>Low risk: ≤1 risk factor</td>
<td><160 mg/dL</td>
<td>≥160 mg/dL</td>
<td>≥190 mg/dL (consider drug options if LDL-C 160–189 mg/dL)</td>
</tr>
</tbody>
</table>

Overview

- Digestive lipid metabolism
- Cholesterol balance
- Inhibitors of cholesterol synthesis and absorption
- Dual inhibition
Overview

- Digestive lipid metabolism
- Cholesterol balance
- Inhibitors of cholesterol synthesis and absorption
- Dual inhibition
Cholesterol

- Critical for membrane function
- Substrate for steroid hormone synthesis
- Synthesized by all cells in the body
- Toxic to cells when present in excess
- Broken down and eliminated by the liver only
Cholesterol

Cholesterol - *membranes*

Cholesteryl ester - *transport/storage*
Reverse Cholesterol Transport

Excess Cholesterol

PERIPHERAL TISSUES → BLOOD → LIVER → BILE
Cholesterol Catabolism Into Bile Salts

Liver Cell ONLY
Cholesterol Catabolism into Bile Salts

Cholesterol

7α-hydroxylase

Cholate
Bile Salts

- Breakdown products of cholesterol
- Amphipathic molecules
- Function to transport cholesterol in the digestive system
Structure of Biliary and Intestinal Micelles

- Bile Salt
- Cholesterol
- Phospholipid
Functions of Micelles

- Transport cholesterol from the liver into the intestine via the biliary tree
- Participate in fat digestion and absorption
Biliary Lipid Secretion

BLOOD

HEPATOCYTE

BILE

- **Sinusoidal Membrane**
- **ABCG5/G8**
- **Cholesterol**
- **ABCB4**
- **Phospholipid**
- **ABCB11**

- **Canalicular Membrane**
- **Bile Salt**
Biliary Lipids

<table>
<thead>
<tr>
<th>Lipid Class</th>
<th>Daily secretion (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bile salts</td>
<td>24</td>
</tr>
<tr>
<td>Phospholipids</td>
<td>11</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>2</td>
</tr>
</tbody>
</table>
Biliary Lipid Transport

Liver → Duodenum → Jejunum → Ileum → Colon
Fat Digestion

Liver

Duodenum

Jejunum

Ileum

Colon

Biliary Transport and Storage
Fat Digestion

Dietary Cholesterol
Fat Digestion

Dietary Cholesterol
Fat Digestion

Lipase

- **Triglycerides**
- **Fatty Acids + Monoglycerides**
Fat Digestion

Lipase

Triglycerides

Fatty Acids + Monoglycerides
Cholesterol Absorption

LYMPH

ENTEROCYTE

INTESTINAL LUMEN

- Cholesterol
- Cholesteryl Ester
- ACAT
- ABCG5/G8
Cholesterol Absorption

LYMPH

ENTEROCYTE

INTESTINAL LUMEN

- Cholesterol
- Cholesteryl Ester
- ACAT
- NPC1L1
- ABCG5/G8
Triglyceride Absorption

LYMPH

ENTEROCYTE

INTESTINAL LUMEN

2 Fatty Acid + Monoglyceride

DGAT

Triglyceride
Chylomicron Formation

LYMPH

ENTEROCYTE

Cholesteryl Ester

Triglyceride

CM apoB48

INTESTINAL LUMEN
Overview

• Digestive lipid metabolism

• **Cholesterol balance**

• Inhibitors of cholesterol synthesis and absorption

• Dual inhibition
Enterohepatic Circulation of Bile Salts

- **Synthesis**: 0.4 g/d
- **Secretion**: 24 g/d
- **Portal Venous Return**: (>95% of Biliary Secretion)
- **Fecal Excretion**: 0.4 g/d

Locations:
- **Duodenum**
- **Jejunum**
- **Ileum**
- **Colon**
Biliary Cholesterol Secretion

Biliary Cholesterol (2 g/d)

Biliary Transport and Storage

Duodenum
Jejunum
Ileum
Colon
Biliary and Dietary Cholesterol

Dietary Cholesterol (0.4 g/d)

Biliary Cholesterol (2 g/d)

Biliary Transport and Storage

Duodenum

Jejunum

Ileum

Colon
Cholesterol Absorption

Diet

- Low Fat/Low Cholesterol
- High Fat/Low Cholesterol
- High Fat/High Cholesterol

Cholesterol Absorption, %

Modified from Sehayek et al. 1998.
Dietary Cholesterol (0.4 g/d) absorption is approximately 50%. Biliary cholesterol (2 g/d) is transported and stored in the colon. CM apoB48 is involved in the process.
Dietary Cholesterol (0.4 g/d)

Biliary Cholesterol (2 g/d)

Absorption ~50%

CM apoB48

Biliary Transport and Storage

Fecal Excretion (1.2 g/d)

Fecal Cholesterol Excretion

Jejunum

Ileum

Colon
Cholesterol Balance

- Synthesis (1.2 g/d)
- Loss (1.6 g/d) - Dietary Cholesterol (0.4 g/d)

Cholesterol + Bile Salts

Dietary Cholesterol (0.4 g/d)

Loss (1.6 g/d)

Cholesterol (1.2 g/d) + Bile Salts (0.4 g/d)
Overview

• Digestive lipid metabolism
• Cholesterol balance
• Inhibitors of cholesterol synthesis and absorption
• Dual inhibition
Inhibitors of Cholesterol Synthesis: Statins

- Inhibit synthesis of cholesterol by cells
- Lower LDL cholesterol

Mechanism: Promote LDL clearance
LDL Receptor

Acetate

HMG-CoA Reductase

Cholesterol

Statins
Statins

Acetate

HMG-CoA Reductase

Cholesterol

LDL Receptor

LDL
Cholesterol Absorption Inhibitors

- Inhibit absorption of dietary cholesterol
- Inhibit reabsorption of biliary cholesterol
- Lower LDL cholesterol

Mechanism: Inhibit LDL formation
Cholesterol Absorption Inhibitors

- Inhibit absorption of dietary cholesterol
- Inhibit reabsorption of biliary cholesterol
- Lower LDL cholesterol

Mechanism: Inhibit LDL formation
Cholesterol Absorption

LYMPH

ENTEROCYTE

NPC1L1

ACAT

INTESTINAL LUMEN

Cholesterol

Cholesteryl Ester

ABCG5/G8
Agents That Interfere With Cholesterol Absorption

- Plant sterols and stanols
- Ezetimibe
Agents That Interfere With Cholesterol Absorption

- Plant sterols and stanols
- Ezetimibe
Cholesterol Absorption

LYMPH

ENTEROCYTE

INTESTINAL LUMEN

- Cholesterol
- NPC1L1
- ACAT
- Cholesteryl Ester
- ABCG5/G8
Plant Sterols and Stanols

Dietary Cholesterol

Sterol/Stanol
Plant Sterols and Stanols

Dietary Cholesterol

Sterol/Stanol
Plant Sterols and Stanols

LYMPH

ENTEROCYTE

INTESTINAL LUMEN

- Cholesterol
- ACAT
- Cholesteryl Ester
- NPC1L1
- ABCG5/G8
Plant Sterols and Stanols

LYMPH

ENTEROCYTE

INTESTINAL LUMEN

Cholesterol

NPC1L1

ACAT

Cholesteryl Ester

ABCG5/G8
Plant Sterols and Stanols

LYMPH

ENTEROCYTE

- Cholesterol
- ACAT
- Cholesteryl Ester
- NPC1L1

INTESTINAL LUMEN

- ABCG5/G8
Cholesterol Absorption Inhibitors

- Plant sterols and stanols
- Ezetimibe
Ezetimibe

LYMPH

ENTEROCYTE

INTESTINAL LUMEN

Cholesterol

Ezetimibe

NPC1L1

ACAT

Cholesteryl Ester

ABCG5/G8
Mechanism of Ezetimibe Action: Role of NPC1L1

Cholesterol Absorption in NPC1L1 Knockout Mice

% Cholesterol absorption

+/- Heterozygous
-/- Homozygous

+/- Wild type

†$P<0.001$ compared with wild-type mice (+/+) and heterozygous (+/-) mice.

Cholesterol Absorption Inhibitors

LYMPH

ENTEROCYTE

INTESTINAL LUMEN

CM apoB48

Triglyceride

Cholesteryl Ester
Cholesterol Absorption Inhibitors

LYMPH

ENTEROCYTE

INTESTINAL LUMEN

CM
apoB48

Triglyceride

Cholesteryl Ester
Cholesterol Absorption Inhibitors

LYMPH

ENTEROCYTE

INTESTINAL LUMEN

- CM apoB48
- Triglyceride
- Cholesteryl Ester
Cholesterol Absorption Inhibitors

- LDL apoB100
- VLDL apoB100
- CM Remnant apoB48
- CM apoB48
- Ezetimibe

Liver → Duodenum
Jejunum
Ileum
Colon
Overview

• Digestive lipid metabolism
• Cholesterol balance
• Inhibitors of cholesterol synthesis and absorption
• Dual inhibition
Assembly and Secretion of VLDL

Endoplasmic Reticulum

Presence of Triglycerides

ApoB

MTP

MTP
Assembly and Secretion of VLDL

Presence of Triglycerides

MTP

Cholesteryl Esters

Cholesterol

Dietary/Biliary

Synthesis

ApoB
Effect of Ezetimibe

Presence of Triglycerides

MTP

ApoB

Cholesteryl Esters

Cholesterol

Dietary/Biliary

Synthesis

Ezetimibe

X
Effect of Ezetimibe

Presence of Triglycerides

ApoB

MTP

Cholesteryl Esters

Cholesterol

Dietary/Biliary

Ezetimibe

Synthesis
Compensatory Upregulation of Cholesterol Synthesis

Presence of Triglycerides

MTP

ApoB

Cholesteryl Esters

Cholesterol

Dietary/Biliary

Ezetimibe

X

Synthesis
Compensatory Upregulation of Cholesterol Synthesis
Addition of Statin Therapy Blocks the Compensatory Response

Presence of Triglycerides

ApoB

Cholesteryl Esters

Cholesterol

Ezetimibe

Dietary/Biliary

Statin

Synthesis
Addition of Statin Therapy Blocks the Compensatory Response

- Presence of Triglycerides
- MTP
- Cholesteryl Esters
- Cholesterol
- Ezetimibe
- Dietary/Biliary Synthesis
- Statin
- Synthesis
Cholesterol Absorption Inhibitors

- LDL apoB100
- VLDL apoB100
- CM Remnant apoB48
- CM apoB48
- Ezetimibe

Locations:
- Duodenum
- Jejunum
- Ileum
- Colon
Dual Inhibition

- LDL apoB100
- VLDL apoB100
- CM Remnant apoB48
- CM apoB48
- Ezetimibe
- Duodenum
- Jejunum
- Ileum
- Colon

Liver

- Dual Inhibition
- Statin
- Ezetimibe
Benefits of Managing Dual Pathways

- Cholesterol balance is regulated by both synthesis and absorption
- Each pathway may compensate for changes in the other
- Optimal LDL lowering may best be achieved by inhibiting both pathways