Sporadic vs. Colitis-Associated Colon Cancer: Vive la difference!

Steven H. Itzkowitz, M.D.
The Dr. Burrill B. Crohn Professor of Medicine
Mount Sinai School of Medicine
New York City, N.Y.
Conclusion

There **must** be a difference between SCC and CAC.

Otherwise, many of us would not get research funding!
Risk of Developing Colorectal Cancer

- General pop’n: 5%
- Personal hx of adenoma/CRC: 15%–20%
- IBD: 15%–40%
- HNPCC: 70%–80%
- FAP: >95%

Lifetime risk (%)
Dysplasia-Carcinoma Sequence

- Normal
- Adenoma
- Cancer
- Colitis
- Dysplasia
- Cancer
Dysplasia in IBD

Flat Dysplasia (not macroscopically visible)

DALM (within colitis)

Adenomatous Polyps (proximal to colitis)

Adenomalike DALM (within colitis)

Photos courtesy of David T. Rubin, MD.
Clinicopathological Features of CRC

<table>
<thead>
<tr>
<th></th>
<th>Sporadic</th>
<th>IBD</th>
<th>HNPCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysplasia:</td>
<td>polyp</td>
<td>flat/polyp</td>
<td>polyp</td>
</tr>
<tr>
<td>Age @ cancer:</td>
<td>60’s</td>
<td>30’s</td>
<td>30’s</td>
</tr>
<tr>
<td>Multiple cancers:</td>
<td>2-3%</td>
<td>10-15%</td>
<td>10-15%</td>
</tr>
<tr>
<td>CRC location:</td>
<td>distal</td>
<td>prox>distal</td>
<td>prox>distal</td>
</tr>
<tr>
<td>Histologic type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mucinous:</td>
<td>rare</td>
<td>common</td>
<td>common</td>
</tr>
<tr>
<td>poorly diff’d:</td>
<td>rare</td>
<td>common</td>
<td>common</td>
</tr>
<tr>
<td>low-grade TGA</td>
<td>very rare</td>
<td>11%</td>
<td>?</td>
</tr>
<tr>
<td>Surveillance interval</td>
<td>5-10 yr</td>
<td>1-2 yr</td>
<td>1-3 yr</td>
</tr>
<tr>
<td>Genetic v. Environ:</td>
<td>Env>Gen.</td>
<td>Env>Gen</td>
<td>Gen>Env.</td>
</tr>
</tbody>
</table>
Low-Grade Tubulo-Glandular Adenocarcinoma (LGTGA)

- Arises directly from LGD.
- Accounts for 11% of IBD-associated CRC.
- Well-differentiated adenocarcinoma with distinct histological features:
 - rounded, oval or tubular glands
 - minimal desmoplastic reaction
 - minimal intraluminal necrosis
 - low-grade nuclear cytology

Does Inflammation Cause CRC in IBD?

Evidence “For”

CRC risk is increased with:

- longer duration of colitis (>7 yrs)
- greater extent of colitis
 - pancolitis > left-sided > proctitis
- primary sclerosing cholangitis
- active inflammation (histologic, endoscopic)

CRC risk is decreased with:

- anti-inflammatory drugs
 - 5-ASA
 - steroids (oral or topical)
Severity of Inflammation as a Risk Factor for CRC in UC

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR of CRC (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colonoscopic inflammation score*</td>
<td>2.54 (1.45-4.44)</td>
<td>.001</td>
</tr>
<tr>
<td>Histologic inflammation score*</td>
<td>5.13 (2.36-11.14)</td>
<td><.001</td>
</tr>
</tbody>
</table>

*Mean (standard deviation); odds ratio (OR) is for a 1-unit increase in score. CI=confidence interval.

Velayos et al. Am J Gastro 100:1345, 2005

Cancer:
O.R. = 0.51 (0.37-0.69)

Dysplasia:
O.R. = 1.18 (0.41-3.43)

CRC or Dysplasia:
O.R. = 0.51 (0.38-0.69)
6MP is Not Chemopreventive in UC

Proportional Hazards Analysis

<table>
<thead>
<tr>
<th>Any Neoplasia HR (CI)</th>
<th>6MP Exposure</th>
<th>Avg Daily Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any Exposure</td>
<td>>25mg/d</td>
</tr>
<tr>
<td>Any Neoplasia</td>
<td>1.06 (0.59-1.93)</td>
<td>1.00 (0.54-1.87)</td>
</tr>
<tr>
<td>Advanced Neoplasia</td>
<td>1.30 (0.45-3.75)</td>
<td>1.49 (0.52-4.32)</td>
</tr>
</tbody>
</table>

Does Inflammation Cause CRC in IBD?

Evidence “Against”

Why don’t patients with proctitis have an increased risk of rectal cancer?

Why does it take 7-8 years of colitis before neoplasia occurs?

Why do patients with quiescent inflammation also have a high risk of CRC?

Why do 6-MP and Azathioprine appear to have no chemopreventive role?

Why don’t all studies indicate that mesalamine use prevents CRC?
PATHWAYS OF COLON CARCINOGENESIS

Chromosomal Instability (e.g. FAP)
- Aneuploidy
- LOH
- Tumor suppressor gene mutations

K-ras DCC/18q genes p53

70-85%

APC

Normal mucosa Early adenoma Intermediate adenoma Late adenoma Carcinoma

15%

Microsatellite Instability (e.g. HNPCC)
- Hypermethylation/mutation of DNA MMR genes
- Target gene alterations (TGFβRII; BAX; others)

25-30%

CpG Island Methylation (CIMP)
- Suppression of gene expression by promoter hypermethylation
- Target genes: hMLH1, MGMT, others
Although the biology of UC-associated dysplasia (p53 lesions early, APC late) and sporadic adenomas differ, the biology of UC-associated cancer and sporadic cancer are remarkably similar.
p53 Mutations Correlate with Dysplasia

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>No.</th>
<th>Mutated*</th>
<th>Aneuploid</th>
<th>LOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
<td>6</td>
<td>83%</td>
<td>83%</td>
<td>83%</td>
</tr>
<tr>
<td>Dysplasia</td>
<td>56</td>
<td>48%</td>
<td>46%</td>
<td>44%</td>
</tr>
<tr>
<td>Indefinite</td>
<td>96</td>
<td>3%</td>
<td>15%</td>
<td>0</td>
</tr>
<tr>
<td>Negative</td>
<td>57</td>
<td>29%</td>
<td>5%</td>
<td>0</td>
</tr>
</tbody>
</table>

*based on colectomy material from 2 patients with mutations of p53 codon 248 (exon 7); PCR --> Msp1 endonuclease digest

p53 mutation -> aneuploidy -> p53 LOH

APC Mutations in UC

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Patients</th>
<th>APC mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC CA</td>
<td>33</td>
<td>2 (6%)</td>
</tr>
<tr>
<td>Sporadic CA</td>
<td>23</td>
<td>17 (74%)</td>
</tr>
</tbody>
</table>

APC mutations are uncommon and late in UC neoplasms

K-Ras Mutations in UC

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Redston</th>
<th>Meltzer</th>
<th>Burmer</th>
<th>Chen</th>
<th>Bell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
<td>3/7 (43%)</td>
<td>1/4 (25%)</td>
<td>1/12 (8%)</td>
<td>3/5 (60%)</td>
<td>8/33 (24%)</td>
</tr>
<tr>
<td>HGD</td>
<td>4/8 (50%)</td>
<td>2/6 (33%)</td>
<td>0/12</td>
<td>1/3 (33%)</td>
<td>--</td>
</tr>
<tr>
<td>LGD</td>
<td>1/7 (14%)</td>
<td>0/6</td>
<td>0/1</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Indefinite</td>
<td>5/14 (36%)</td>
<td>0/5</td>
<td>0/3</td>
<td>0/8</td>
<td>--</td>
</tr>
<tr>
<td>Negative</td>
<td>0/17</td>
<td>--</td>
<td>--</td>
<td>0/2</td>
<td>--</td>
</tr>
</tbody>
</table>

K-ras mutations occur late in UC neoplasms

MSI in Non-Neoplastic UC Mucosa

Loci: D2S119, D2S123, D2S136, D3S1067, D5S346, D6S87, D8S255, D13S175, D17S87, D17S261, D18S34, D18S35

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>MSI >1 locus</th>
<th>MSI >2 loci</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Term UC: (mean 20 yrs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative dyspl.</td>
<td>6/10 (60%)</td>
<td>5/10 (50%)</td>
</tr>
<tr>
<td>HGD</td>
<td>11/13 (85%)</td>
<td>6/13 (46%)</td>
</tr>
<tr>
<td>Cancer</td>
<td>2/5 (40%)</td>
<td>2/5 (40%)</td>
</tr>
<tr>
<td>Short Term UC: (mean 2.2 yrs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative dyspl.</td>
<td>5/6 (83%)</td>
<td>2/6 (33%)</td>
</tr>
<tr>
<td>Ischemic colitis:</td>
<td>0/9</td>
<td>0/9</td>
</tr>
</tbody>
</table>

MSI is an early event in UC carcinogenesis

p16^{INK4a} Promoter Methylation in UC Neoplasia

<table>
<thead>
<tr>
<th>Tissue Status*</th>
<th>p16 methylation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No dysplasia</td>
<td>7/21 (33%)</td>
</tr>
<tr>
<td>Dysplasia/cancer</td>
<td>18/24 (75%)</td>
</tr>
</tbody>
</table>

tissue taken from 3 colectomy specimens

Methylation is an early event in UC carcinogenesis

hMLH1 Methylation in UC Neoplasia

<table>
<thead>
<tr>
<th>Tissue Status</th>
<th>hMLH1 Methylation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSI-H</td>
<td>6/13 (46%)</td>
</tr>
<tr>
<td>MSI-L</td>
<td>1/16 (6%)</td>
</tr>
<tr>
<td>MSS</td>
<td>4/27 (15%)</td>
</tr>
</tbody>
</table>

*only dysplasia or cancer tissues used

Methylation occurs in MSI-H tumors, but also MSS

Fleisher et al. Cancer Res. 60:4864, 2000
Age-Related Gene Methylation in UC

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>(Age)</th>
<th>ER</th>
<th>MYOD</th>
<th>p16</th>
<th>CSPG2</th>
<th>(% gene methylation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>(53.4)</td>
<td>7.4</td>
<td>3.0</td>
<td>2.4</td>
<td>30.6</td>
<td></td>
</tr>
<tr>
<td>UC-ND</td>
<td>(42.0)</td>
<td>3.0</td>
<td>3.0</td>
<td>3.3</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td>UC-HGD/CA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEG</td>
<td>(53.2)</td>
<td>20.1</td>
<td>18.4</td>
<td>7.9</td>
<td>35.2</td>
<td></td>
</tr>
<tr>
<td>IND</td>
<td>(40.0)</td>
<td>20.0</td>
<td>27.7</td>
<td>13.0</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td>HGD/CA</td>
<td>(54.0)</td>
<td>40.0</td>
<td>44.0</td>
<td>9.4</td>
<td>57.5</td>
<td></td>
</tr>
</tbody>
</table>

Age-related methylation is enhanced in UC neoplasia

*Issa et al. *Cancer Res.* 61:3573, 2001*
Normal epithelium

Environmental trigger
• Bacterial/viral infection
• NSAIDs
• Other toxins

Inflamed epithelium (colitis)

Inflammatory cells

Oxidative stress
• Reactive oxygen species (ROS)
• NO; H2O2; others

Damaged epithelium

Genetic/epigenetic changes:
• p53 mutation/activation
• damage/mutation of DNA MMR system
• methylation of regulatory genes
• telomere shortening

Additional genetic changes

Increased epithelial cell turnover
• proliferation
• apoptosis

Dysplasia

Cancer

Itzkowitz and Yio, Am J Physiol. 287:G7-17, 2004
p53 Mutations in Non-Neoplastic UC Tissues

- 50% of bx’es from inflamed UC tissues exhibited:
 - G-to-A transition at codon 248 (CGG->CAG)
 - C-to-T transition at codon 247 (AAC->AAT)
- Only found in UC tissues, not normal controls
- In UC tissues, only in “lesional” biopsies
- Correlated with NOS2 activity

Chronic inflammation can induce p53 mutations

Hussain et al. Cancer Res. 60:3333-7, 2000
DNA Mismatch Repair

H₂O₂

base-base mismatch

1 base insertion/deletion loop

2-8 base insertion/deletion loop

MSH2

MSH6

MLH1

ummer

PMS2

MLH1

MLH3

MLH1

MLH3

MLH1

PMS1

MLH1

PMS2

MLH1

PMS2

H₂O₂
Inflammation Predisposes to Colon Cancer:
In Vivo Evidence from Animal Models

Three main approaches:

1. **Normal mice:**
 Induce colitis with noxious agent and monitor for development of neoplasia.

2. **Cancer prone mice:**
 – Induce colitis and monitor for higher rates of neoplasia
 -or-
 – Reduce colitis and monitor for lower rates of neoplasia

3. **IBD-prone mice:**
 Determine whether IBD-prone mice develop neoplasia

Itzkowitz and Yio, Am J Physiol. 287:G7-17, 2004
Inflammation--->Cancer Normal Mice:

• Dysplasia and cancer can be induced after repeated cycles of dextran sulfate sodium (DSS)
• Longer disease duration --> increased rate of neoplasia, even in the setting clinical remission
• Neoplasia associated with more severe degrees of inflammation, especially in the distal colon.
• Treatment with antioxidant (N-acetylcysteine) reduced both inflammation and tumor incidence

Seril et al. *Carcinogenesis* 23:993, 2002
Cancer-Prone Mice:

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>APC^{min/+}</td>
<td>intestinal adenomas</td>
</tr>
<tr>
<td>APC^{min/+} + DSS</td>
<td>intestinal adenomas & cancers</td>
</tr>
<tr>
<td>MSH2^{-/-}</td>
<td>small bowel cancer</td>
</tr>
<tr>
<td>MSH2^{-/-} + DSS</td>
<td>colonic dysplasia and cancer</td>
</tr>
<tr>
<td>p53^{-/-}</td>
<td>no intestinal cancer</td>
</tr>
<tr>
<td>p53^{-/-} + DSS</td>
<td>colon cancer (100%) & dysplasia</td>
</tr>
<tr>
<td>APC^{min/+}</td>
<td>colonic adenomas</td>
</tr>
<tr>
<td>APC^{min/+} + C. rodentium</td>
<td>more colonic adenomas</td>
</tr>
</tbody>
</table>
Cancer-Prone Mice:
\[\downarrow \text{inflammation} \Rightarrow \downarrow \text{tumors} : \]

- \(\text{APC}^{\text{min}+/+} \times \text{COX-2}^{-/-} \)
- \(\text{APC}^{\text{min}+/+} + \text{COX-2 inhibitor} \)
- \(\text{APC}^{\text{min}+/+} \times \text{iNOS}^{-/-} \)
- \(\text{APC}^{\text{min}+/+} + \text{iNOS inhibitor} \)
- \(\text{AOM} \rightarrow \text{DSS} \)
 - IKKB\(^{-} \) in epithelial cells
 - \(\uparrow \text{epith. cell apoptosis} \)
 - IKKB\(^{-} \) in myeloid cells
 - \(\downarrow \text{pro-inflamm. cytokines} \)

\[\Rightarrow 75\% \text{ fewer tumors} \]
\[\Rightarrow 50\% \text{ fewer, smaller tumors} \]

Colitis-Prone Mice

<table>
<thead>
<tr>
<th>Mouse</th>
<th>Histology</th>
<th>Neoplasia</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL2/-</td>
<td>colitis (UC)</td>
<td>dysplasia</td>
<td></td>
</tr>
<tr>
<td>IL2/β2M DKO</td>
<td>milder colitis</td>
<td>dysplasia; CRC</td>
<td>APC; p53; MSI</td>
</tr>
<tr>
<td>IL10/-</td>
<td>enterocolitis</td>
<td>CRC (25-60%)</td>
<td>No APC, p53, kras, Msh2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IL-10 rx: ↓ colitis & CRC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Req. flora; E. faecalis</td>
</tr>
<tr>
<td>Rag2/-</td>
<td>colitis</td>
<td>dysplasia; CRC</td>
<td>Requires H. hepaticus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IL-10 rx: ↓ colitis & CRC</td>
</tr>
<tr>
<td>Rag2/TGFβ1 DKO</td>
<td></td>
<td>dysplasia; CRC</td>
<td>Requires H. hepaticus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CRC independ. of colitis</td>
</tr>
<tr>
<td>TCRβ/p53 DKO</td>
<td>colitis (UC)</td>
<td>dysplasia; CRC</td>
<td>Requires flora</td>
</tr>
<tr>
<td>Gpx1/Gpx2 DKO</td>
<td>ileocolitis</td>
<td>dysplasia; CRC</td>
<td>Requires flora</td>
</tr>
</tbody>
</table>

Lessons From Animal Models

- Colonic neoplasia develops in genetically susceptible hosts
- Requires prolonged periods of chronic inflammation
- Requires fecal flora (*Helicobacter* sp; others?)
Culture of mucosa-associated bacteria in IBD and colon cancer

Martin et al, Gastroenterology 2004 127(1):80-93
Increased haemagglutinating activity by mucosa-associated *E. coli* in Crohn's disease and colon cancer correlates with their ability to adhere to and invade intestinal epithelial cells.

Martin et al Gastroenterology 2004;127:80-93
Mucosal bacteria

Inflammation
- Unesterified arachidonic acid
 (Cao et al, PNAS 2000;97:11280-5)
- Mucosal apoptosis

NFkappaB Activation

Cox2 activation

Prostaglandin E2-induced nuclear localisation of Beta catenin

Mutagenesis

Carcinogens

Cancer

Common mechanisms for IBD-associated and sporadic colon cancer

Adapted from Rhodes & Campbell Trends Molecular Med 2002
Summary

- There are more clinicopathologic and molecular differences between SCC and CAC than there are similarities.
- This appears to be due to chronic inflammation.
- Whether bacteria play a role in human colitis-associated neoplasia (or perhaps even sporadic CRC) requires further investigation.
Summary-Human Observations

• IBD patients are at increased risk for CRC.
• The risk of CRC rises with increased duration, extent, and severity of inflammation, and with associated PSC.
• Use of certain anti-inflammatory medications (5-ASA, steroids) may reduce the development of CRC in IBD.
• Oxidative stress causes genomic instability leading to the development of dysplasia.
• Molecular markers may help to identify patients at increased risk of CRC.